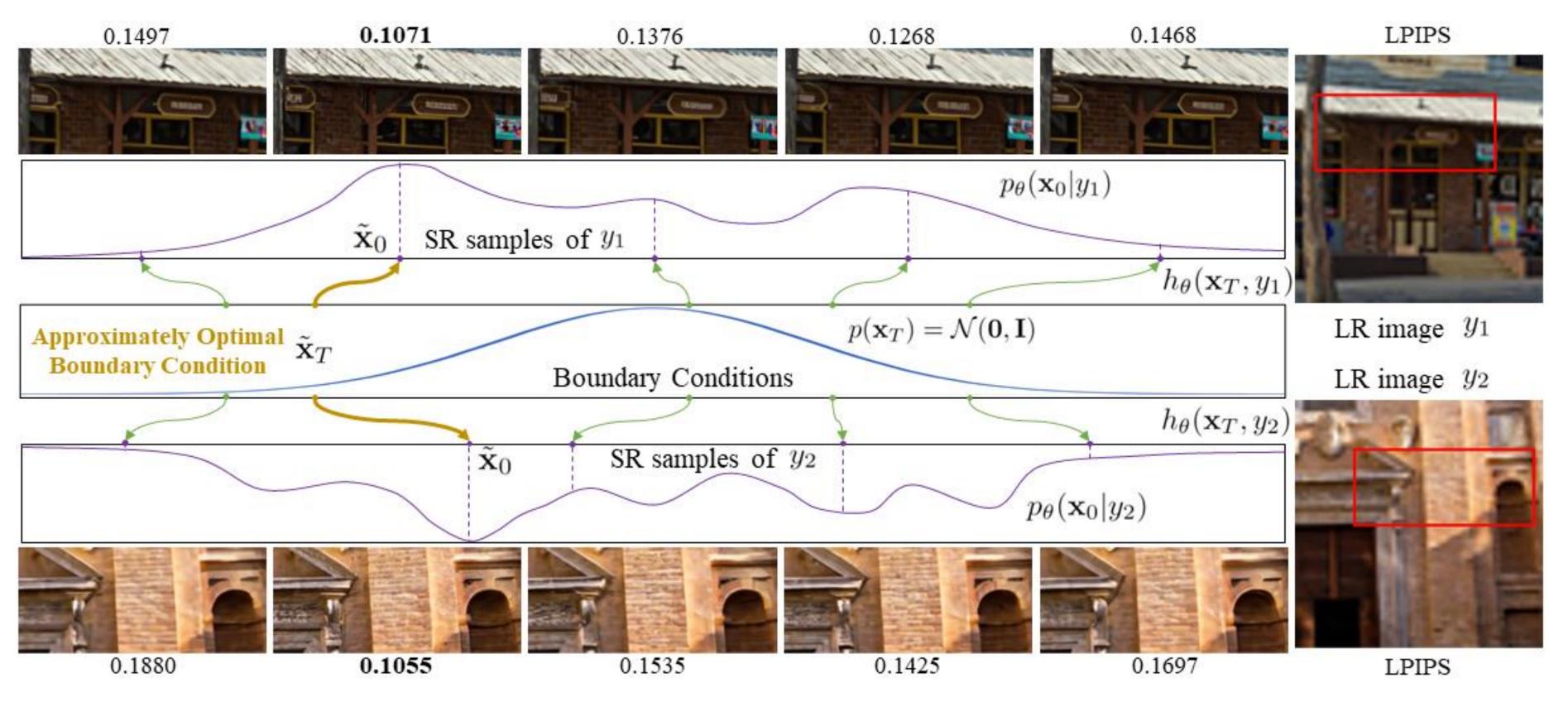
Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution

Yiyang Ma¹, Huan Yang², Wenhan Yang³, Jianlong Fu², Jiaying Liu¹ ¹Wangxuan Institute of Computer Technology, Peking University ²*Microsoft Research* ³*Pengcheng Laboratory*

Spatial and Temporal Restoration, Understanding and Compression

Introduction


Problem:

Instability during inference of Diffusion-based SR

models due to the randomness.

Existing Works:

Did not deal with the phenomenon.

Simply fixed the random seed during inference.

Our Solution

Analysis on the Approx. Optim. BC of Diffusion ODEs. Obtaining the $\tilde{\mathbf{x}}_T$ with a ref. set of image pairs.

Applying the $\tilde{\mathbf{x}}_T$ to all the LRs, achieving better and stable results.

Approach - Can Boost All the Diffusion-based SR Models

Preliminary: Diffusion ODE sampler

The results are determined by the **boundary condition** \mathbf{x}_T

(*i.e.*, the Gaussian noise at the start of the sampling process).

e.g., DDIM (ICLR 21'), DPM-Solver (NIPS 22').

Thus, the SR images can be a function of BC and LR image:

 $\mathbf{x}_0 = h_{\theta}(\mathbf{x}_T, \mathbf{y})$

Find an Approx. Optim. BC x_T

The BC that can generate the SR image which is the most close to the HR image:

 $\mathbf{x}_0^* = h_{\theta}(\mathbf{x}_T^*, \mathbf{y})$, where $\mathbf{x}_0^* = \arg \max p_{\theta}(\mathbf{x}_0 | \mathbf{y})$ We prove that the \mathbf{x}_T^* is approximately consistent to different LRs: $\mathbf{x}_T^* = \arg \max p_{\theta}(h_{\theta}(\mathbf{x}_T, \mathbf{y})) \approx \arg \max p_{\theta}(h_{\theta}(\mathbf{x}_T, \mathbf{y}_i)), \forall \mathbf{y}_i \in \mathcal{C}$ $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Apply the $\tilde{\mathbf{x}}_T$ to Different LRs

We employ perceptual distance between SR and HR as an

approximated implementation of the likelihood.

We build a reference set and calculate the $\tilde{\mathbf{x}}_T$ on it:

 $\tilde{\mathbf{x}}_T \approx \operatorname*{arg\,min}_{\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \sum_{i=1}^{N} M(h_\theta(\mathbf{x}_T, \mathbf{y}_i), \mathbf{z}_i)$

Experiments

Optimal Boundary Condition \mathbf{x}_T^*

As we have declared before, the $\tilde{\mathbf{x}}_T$ can be directly applied in the sampling process of different LRs:

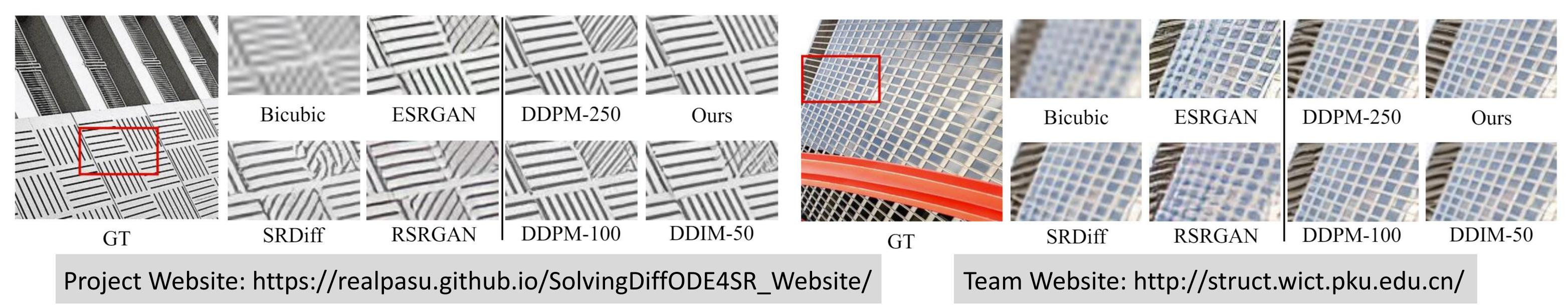
 $\tilde{\mathbf{x}}_0 = h_{\theta}(\tilde{\mathbf{x}}_T, \mathbf{y})$

achieving stable and better SR performances.

The method does not limited the SR model itself, which means it

can be employed in all the diffusion-based SR models.

We evaluate our approach on 3 different diffusion-based SR models.


On Real World-SR

On Bicubic-SR 📫

Model (& sampling method)		DIV2k-test			RealSR		
		DISTS \downarrow	LPIPS \downarrow	$PSNR\uparrow$	DISTS \downarrow	LPIPS \downarrow	PSNR \uparrow
RealSR		0.3051	0.5148	22.52	0.2532	0.3673	26.30
BSRGAN		0.2253	0.3416	22.13	0.2057	0.2582	25.52
DASR		0.2340	0.3444	22.02	0.2113	0.3014	26.32
Real-ESRGAN		0.2108	0.3109	22.36	0.2020	0.2511	25.12
KDSR-GAN		0.2022	0.2840	22.92	0.2006	0.2425	26.09
StableSR	DDPM-200	0.2010	0.3189	19.42	0.2210	0.3065	21.37
	DDIM-50	0.2217	0.3629	18.82	0.2336	0.3536	21.24
	DDIM-50 + $\tilde{\mathbf{x}}_T$	0.2046	0.3169	19.55	0.2164	0.2999	22.13
DiffIR	D-4	0.1773	0.2360	22.94	0.2076	0.2604	25.33
	$D-4 + \tilde{x}_T$	0.1772	0.2357	22.95	0.1993	0.2419	25.82

Model (& sampling method)		DIV2k-test		Urban100		BSD100	
		\downarrow LPIPS \downarrow	PSNR \uparrow	LPIPS \downarrow	PSNR \uparrow	\downarrow LPIPS \downarrow	PSNR \uparrow
ESRGAN		0.1082	28.18	0.1226	23.04	0.1579	23.65
RankSRGAN		0.1171	27.98	0.1403	23.16	0.1714	23.80
SRDiff		0.1286	28.96	0.1391	23.88	0.2046	24.17
SR3	DDPM-1000	0.1075	28.75	0.1165	24.33	0.1555	23.86
	DDPM-250	0.1142	28.95	0.1181	24.41	0.1621	24.00
	DDPM-100	0.1257	29.16	0.1232	24.51	0.1703	24.15
	DPMS-20	0.1653	27.25	0.1413	23.46	0.2037	22.79
	DDIM-50	0.1483	28.55	0.1333	24.16	0.1823	23.75
	DDIM-100	0.1571	28.16	0.1335	24.05	0.1950	23.55
	DPMS-20 + $\tilde{\mathbf{x}}_T$	0.1210	27.45	0.1179	23.57	0.1687	22.81
	DDIM-50 + $\tilde{\mathbf{x}}_T$	0.1053	28.65	0.1164	24.26	0.1552	23.99
	DDIM-100 + $\tilde{\mathbf{x}}_T$	0.1032	28.48	0.1136	24.12	0.1505	23.67

Visual Results

